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Demo samples, source code and preprlnt

Demo samples: Hi-Fi-CAPTAIN corpus for Japanese
used in experiments

Source code based on ESPnet2-TTS TED 'lr
- Recipe for Hi-Fi-CAPTAIN corpus used in experiments [m] %! E

https://ast-astrec.nict.go.jp/demo_samples/convnext-tts_vc/

Hi-Fi-CAPTAIN corpus:

High-fidelity and high-capacity conversational speech
synthesis corpus developed by NICT
1 female and 1 male (English): 14K utts (parallel: 13K) :
1 female and 1 male (Japanese): 19K utts (parallel: 18.5K)
ESPnet2-TTS recipe for JETS-based E2E-TTS

https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/

1. Introduction

B Fast and high-fidelity neural text-to-speech (TTS ) and voice
conversion (VC) models
B End-to-end (E2E) sequence-to-sequence (S2S) TTS model:
MS-FC-JETS (Yamashita+ IEEE Access 2024)
¥ Realizing high-fidelity and fast synthesis with real-time factor
(RTF) of 0.14 using a CPU
B E2E-S2S-VC model: JETS-VC (Okamoto+ Interspeech 2023)
¥ Realizing higher quality conversion than cascade models
B Motivation of proposed method
¥ Transformer blocks are introduced to encoder and decoder of
acoustic models as de facto standard for S2S-TTS and S2S-VC
¥ ConvNeXt-based model is proposed and outperforms Swin-
Transformer in image recognition
¥ ConvNeXt-based very fast neural vocoders: Vocos (Siuzdak
ICLR 2024) and WaveNeXt (Okamoto+ ASRU 2023)
B Proposed methods
B ConvNeXt blocks are introduced to encoder and decoder in
acoustic models instead of Transformer blocks
B Results: Proposed models can improve inference speed while
keeping synthesis quality

2. Conventional models

B ConvNeXt (Liu+ CVPR 2022)
B ResNet-based fast and high-fidelity model by introducing essence
of Transformer
% Depthwise convolution corresponds to weighted sum in self-
attention of Transformer

THEH

B WaveNeXt (Okamoto+ ASRU 2023)
B Replacing iSTFT-based upsampling layer in Vocos (Siuzdak ICLR
2024) with trainable linear layer similar to MS-FC-JETS
* Improvmg synthesis quallty while keeping inference speed
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B (a) JETS (Lim+ Interspeech 2022) and JETS-VC (Okamoto+ IS 2023)
B E2E-S2S-TTS and VC models realized by joint training of
FastSpeech 2 and HiFi-GAN with monotonic alignment search

3. Proposed method:

M (c) CS-JETS and CS-JETS-VC

B ConvNeXt blocks are introduced only to encoder and decoder in
acoustic models of JETS and JETS-VS instead of Transformer
blocks

(d) ConvNeXt-TTS and ConvNeXt-VC

B ConvNeXt blocks are introduced not only to encoder and decoder
in acoustic models instead of Transformer blocks but also to
speech waveform generative models as WaveNeXt instead of
HiFi-GAN

B All the modules are constructed from ConvNeXt blocks
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Vocos discriminators H HiFi-GAN discriminator:
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4. Experiments

B Experimental conditions
B Dataset: One female and one male in Hi-Fi-CAPTAIN corpus
B Sampling frequency fs: 24 kHz
B Objective evaluation criteria: MCD, logfcRMSE, CER and RTF
B Subjective evaluation criteria (N=23): Naturalness and similarity
B Results of experiments

Female (Japanese) Male (Japanese)

Condition Model (Acoustic model + Neural vocoder) RTF | MCD [dB] logf, RMSE CER[%] | MCD[dB] logf, RMSE CER [%]

E2E-S2S-TTS || JETS (Transformer + HiFi-GAN) [10] 0.83 | 596+ 0.63 0.21 £0.05 0.4 5.09£0.56  0.19 £ 0.05 0.9
JETS-WN (Transformer + WaveNeXt) [20] || 0.07 | 5.75£0.57 0.21 £0.07 0.4 5.01 £0.62  0.19 £ 0.05 0.5
CN-JETS (ConvNeXt + HiFi-GAN) 0.81 | 576 £0.61  0.20 £ 0.07 0.6 498+0.58  0.19 £ 0.05 0.6
ConvNeXt-TTS (ConvNeXt + WaveNeXt) || 0.05 | 5.67 £0.59  0.20 & 0.06 0.4 4.87 £0.54  0.20 £ 0.06 0.4
Male to Female (Japanese) Female to Male (Japanese)
E2E-S2S-VC JETS-VC (Transformer + HiFi-GAN) [6] 0.83 | 555+£0.51  0.20 £ 0.06 1.2 490+048 0.18£0.06 34
JETS-WN-VC (Transformer + WaveNeXt) || 0.07 | 543 £0.50  0.21 £ 0.06 1.1 487+047 0.18 £ 0.05 49
CN-JETS-VC (ConvNeXt + HiFi-GAN) 0.81 | 552+0.54  0.20 £+ 0.06 1.0 4754+046  0.19 £0.05 1.3
ConvNeXt-VC (ConvNeXt + WaveNeXt) 0.05 | 540+ 0.52 0.21 £+ 0.07 0.8 4.69 +0.48 0.18 + 0.05 0.4
Ground truth N/A N/A N/A 0.0 N/A N/A 0.0
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