ConvNeXt-based fast end-to-end sequence-to-sequence text-to-speech and voice conversion

Takuma Okamoto¹, Yamato Ohtani¹, Tomoki Toda^{2,1}, and Hisashi Kawai¹

¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

Demo samples, source code and preprint

Demo samples: Hi-Fi-CAPTAIN corpus for Japanese used in experiments

Source code based on ESPnet2-TTS

- Recipe for Hi-Fi-CAPTAIN corpus used in experiments

https://ast-astrec.nict.go.jp/demo_samples/convnext-tts_vc/

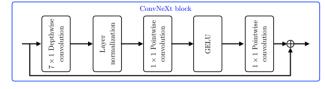
Hi-Fi-CAPTAIN corpus:

High-fidelity and high-capacity conversational speech synthesis corpus developed by NICT

1 female and 1 male (English): 14K utts (parallel: 13K)

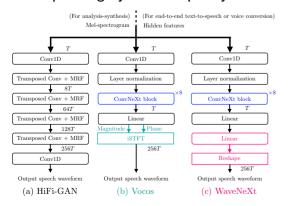
1 female and 1 male (Japanese): 19K utts (parallel: 18.5K)

ESPnet2-TTS recipe for JETS-based E2E-TTS


https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/

1. Introduction

- Fast and high-fidelity neural text-to-speech (TTS) and voice conversion (VC) models
 - End-to-end (E2E) sequence-to-sequence (S2S) TTS model:MS-FC-JETS (Yamashita+ IEEE Access 2024)
 - ** Realizing high-fidelity and fast synthesis with real-time factor (RTF) of 0.14 using a CPU
 - E2E-S2S-VC model: JETS-VC (Okamoto+ Interspeech 2023)
 - * Realizing higher quality conversion than cascade models
- Motivation of proposed method
 - * Transformer blocks are introduced to encoder and decoder of acoustic models as de facto standard for S2S-TTS and S2S-VC
 - ** ConvNeXt-based model is proposed and outperforms Swin-Transformer in image recognition
 - ** ConvNeXt-based very fast neural vocoders: Vocos (Siuzdak ICLR 2024) and WaveNeXt (Okamoto+ ASRU 2023)
- Proposed methods
 - ConvNeXt blocks are introduced to encoder and decoder in acoustic models instead of Transformer blocks
- Results: Proposed models can improve inference speed while keeping synthesis quality


2. Conventional models

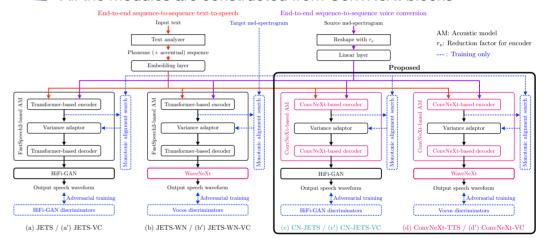
- ConvNeXt (Liu+ CVPR 2022)
 - ResNet-based fast and high-fidelity model by introducing essence of Transformer
 - * Depthwise convolution corresponds to weighted sum in selfattention of Transformer

WaveNeXt (Okamoto+ ASRU 2023)

- Replacing iSTFT-based upsampling layer in Vocos (Siuzdak ICLR 2024) with trainable linear layer similar to MS-FC-JETS
 - * Improving synthesis quality while keeping inference speed

Preprint of WaveNeXt

- (a) JETS (Lim+ Interspeech 2022) and JETS-VC (Okamoto+ IS 2023)
 - E2E-S2S-TTS and VC models realized by joint training of FastSpeech 2 and HiFi-GAN with monotonic alignment search


3. Proposed method:

(c) CS-JETS and CS-JETS-VC

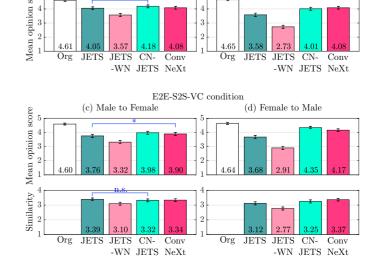
ConvNeXt blocks are introduced only to encoder and decoder in acoustic models of JETS and JETS-VS instead of Transformer blocks

(d) ConvNeXt-TTS and ConvNeXt-VC

- ConvNeXt blocks are introduced not only to encoder and decoder in acoustic models instead of Transformer blocks but also to speech waveform generative models as WaveNeXt instead of HiFi-GAN
- All the modules are constructed from ConvNeXt blocks

4. Experiments

Experimental conditions


- Dataset: One female and one male in Hi-Fi-CAPTAIN corpus
- Sampling frequency f_s: 24 kHz
- Objective evaluation criteria: MCD, logf₀RMSE, CER and RTF
- Subjective evaluation criteria (N=23): Naturalness and similarity
- Results of experiments

			Female (Japanese)			Male (Japanese)		
Condition	Model (Acoustic model + Neural vocoder)	RTF	MCD [dB]	$\log f_{\rm o}$ RMSE	CER [%]	MCD [dB]	$\log f_{\rm o}$ RMSE	CER [%]
E2E-S2S-TTS	JETS (Transformer + HiFi-GAN) [10]	0.83	5.96 ± 0.63	0.21 ± 0.05	0.4	5.09 ± 0.56	0.19 ± 0.05	0.9
	JETS-WN (Transformer + WaveNeXt) [20]	0.07	5.75 ± 0.57	0.21 ± 0.07	0.4	5.01 ± 0.62	$\textbf{0.19} \pm \textbf{0.05}$	0.5
	CN-JETS (ConvNeXt + HiFi-GAN)	0.81	5.76 ± 0.61	0.20 ± 0.07	0.6	4.98 ± 0.58	$\textbf{0.19} \pm \textbf{0.05}$	0.6
	ConvNeXt-TTS (ConvNeXt + WaveNeXt)	0.05	5.67 ± 0.59	$\textbf{0.20} \pm \textbf{0.06}$	0.4	$\textbf{4.87} \pm \textbf{0.54}$	0.20 ± 0.06	0.4
			Male to Female (Japanese)			Female to Male (Japanese)		
E2E-S2S-VC	JETS-VC (Transformer + HiFi-GAN) [6]	0.83	5.55 ± 0.51	$\textbf{0.20} \pm \textbf{0.06}$	1.2	4.90 ± 0.48	0.18 ± 0.06	3.4
	JETS-WN-VC (Transformer + WaveNeXt)	0.07	5.43 ± 0.50	0.21 ± 0.06	1.1	4.87 ± 0.47	$\textbf{0.18} \pm \textbf{0.05}$	4.9
	CN-JETS-VC (ConvNeXt + HiFi-GAN)	0.81	5.52 ± 0.54	$\textbf{0.20} \pm \textbf{0.06}$	1.0	4.75 ± 0.46	0.19 ± 0.05	1.3
	ConvNeXt-VC (ConvNeXt + WaveNeXt)	0.05	$\textbf{5.40} \pm \textbf{0.52}$	0.21 ± 0.07	0.8	$\textbf{4.69} \pm \textbf{0.48}$	$\textbf{0.18} \pm \textbf{0.05}$	0.4
	Ground truth	N/A	N/A	N/A	0.0	N/A	N/A	0.0

E2E-S2S-TTS condition

(b) Male

(a) Female

