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NICT Fast Neural Text-To-Speech System on Smartphones With
Incremental Inference of MS-FC-HiFi-GAN for Low-Latency Synthesis

S Takuma Okamoto, Yamato Ohtani, and Hisashi Kawai @
NCIC T) S | . . . 2
National Institute of Information and Communications Technology, Japan Anmversary
Press release Hi-Fi-CAPTAIN corpus

High-fidelity and high-capacity conversational speech
synthesis corpus developed by NICT
1 female and 1 male (English): 14K utts (parallel: 13K) :
1 female and 1 male (Japanese): 19K utts (parallel: 18.5K)
ESPnet2-TTS recipe for JETS-based E2E-TTS

SyntheS|Z|ng one second of speech at high speed in
only 0.1 seconds using a CPU

B Fast synthesis with a latency of 0.5 seconds on a
smartphone without network connection

https://www.nict.go.jp/en/press/2024/07/26-1.html https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
1. Introduction 3. Incremental inference for low-latency
B Background SyntheS|S

B Fast and High-fidelity neural text-to-speech (TTS) can be realized
B NICT developed 21-language neural TTS models and implemented
them on VoiceTra

B Incremental inference applied only to neural vocoder
B Acoustic model: Incremental inference increases synthesis error
. -> batch inference
L;'."‘. E B Neural vocoder: Incremental inference without performance
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Inpug text

Batch inference in acoustic model

https://voicetra.nict.go.jp/en/index.html

Mel-spectrogram

B Typical neural TTS systems are run on servers and require network
connectivity 50 o

B Purpose
B Fast and High-fidelity neural TTS models working on edge devices
are required

96 frames

96 frames
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2. Prototyped Mobile PresenTra

64 frames x 256 = 16384 samples 32 frames x 256 = 8192 samples

B Fast and high-fidelity neural TTS model on smartphones @ 24 kHz

B Trained on PyTorch and implemented to smartphones using .
LibTorch and C++ 4. Results of evaluations

B Inference time, real-time factor and latency can be displayed B Previous systems VS Mobile PresenTra
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B MS-FC-HiFi-GAN (Yamashita+ IEEE Access 2024) :
RTF for batch inference on server 0.2 0.08
B HiFi-GAN-based neural vocoder with linear layer-based RTF for batch inference on smartphone 0.85 0.30
Upsamp“ng Latency for incremental inference on server 0.35 s 0.17 s
* |mproving inference Speed while keeping Synthesis qua“ty Latency for incremental inference on smartphone 1.13 s 0.47 s




