INTERSPEECH 2024

Mobile PresenTra:

NICT Fast Neural Text-To-Speech System on Smartphones With Incremental Inference of MS-FC-HiFi-GAN for Low-Latency Synthesis

Takuma Okamoto, Yamato Ohtani, and Hisashi Kawai

National Institute of Information and Communications Technology, Japan

Press release

- 21-language, fast and high-fidelity neural text-to-speech
- Synthesizing one second of speech at high speed in only 0.1 seconds using a CPU
- Fast synthesis with a latency of 0.5 seconds on a smartphone without network connection

https://www.nict.go.jp/en/press/2024/07/26-1.html

Hi-Fi-CAPTAIN corpus

High-fidelity and high-capacity conversational speech synthesis corpus developed by NICT

1 female and 1 male (English): 14K utts (parallel: 13K)

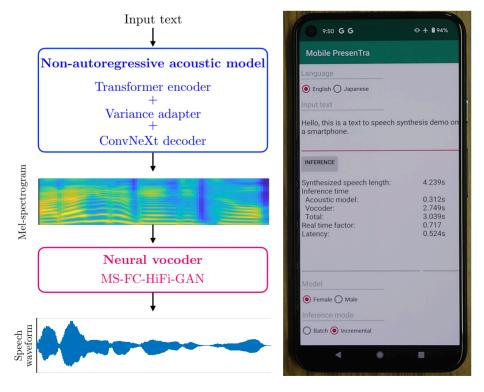
1 female and 1 male (Japanese): 19K utts (parallel: 18.5K)

ESPnet2-TTS recipe for JETS-based E2E-TTS

https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/

1. Introduction

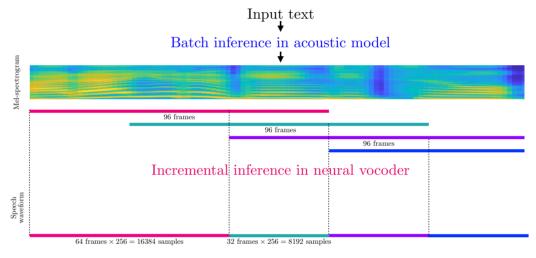
- Background
 - Fast and High-fidelity neural text-to-speech (TTS) can be realized
 - NICT developed 21-language neural TTS models and implemented them on VoiceTra



https://voicetra.nict.go.jp/en/index.html

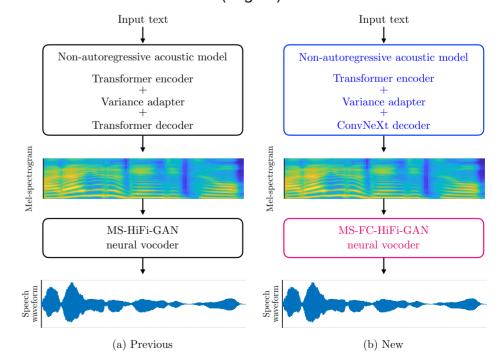
- Typical neural TTS systems are run on servers and require network connectivity
- Purpose
 - Fast and High-fidelity neural TTS models working on edge devices are required

2. Prototyped Mobile PresenTra


- Fast and high-fidelity neural TTS model on smartphones @ 24 kHz
 - Trained on PyTorch and implemented to smartphones using LibTorch and C++
 - Inference time, real-time factor and latency can be displayed

- ConvNext-TTS & ConvNext-VC (Okamoto+ ICASSP 2024)
 - E2E-S2S-TTS and VC models with ConvNeXt-based encoder and decoder instead of Transformer-based ones
 - * Improving inference speed while keeping synthesis quality
- MS-FC-HiFi-GAN (Yamashita+ IEEE Access 2024)
 - HiFi-GAN-based neural vocoder with linear layer-based upsampling
 - * Improving inference speed while keeping synthesis quality

3. Incremental inference for low-latency synthesis


- Incremental inference applied only to neural vocoder
- Acoustic model: Incremental inference increases synthesis error
 -> batch inference
- Neural vocoder: Incremental inference without performance degradation

4. Results of evaluations

Previous systems VS Mobile PresenTra

Dataset: Hi-Fi-CAPTAIN (English)

	Previous system	Mobile PresenTra	
	Acoustic model: Transformer encoder Transformer decoder	Acoustic model: Transformer encoder ConvNeXt decoder	
	Neural vocoder: MS-HiFi-GAN	Neural vocoder: MS-FC-HiFi-GAN	Original
UTMOS	4.39	4.43	4.45
RTF for batch inference on server	0.2	0.08	
RTF for batch inference on smartphone	0.85	0.30	1
Latency for incremental inference on server	0.35 s	0.17 s	1
Latency for incremental inference on smartphone	1.13 s	0.47 s	