

SFC-L1:

Sound Field Control With Least Absolute Deviation Regression

Takuma Okamoto

National Institute of Information and Communications Technology, Japan

1. Introduction

- Sound field control with multiple loudspeakers and control points
 - Pressure matching, mode-matching ...
 - Least squares (LS) regression
 - -> Maximum-likelihood estimation
 - = Error is assumed to be Gaussian distribution
- Proposed method: SFC-L1
 - Pressure matching with least absolute value (LAD) regression
 - -> Error is assumed to be Laplace distribution
- Torch-SFC
 - Pytorch-based sound field control toolkit

2. Conventional LS-based methods

- Simple and weighted pressure matching methods
 - Synthesized sound field

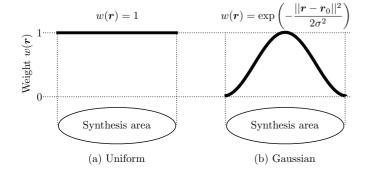
$$p_{ ext{syn}}(oldsymbol{r}) = \sum_{l=1}^{L} d_l(oldsymbol{r}_l) G\left(oldsymbol{r} | oldsymbol{r}_l
ight) = oldsymbol{g}(oldsymbol{r})^{ op} oldsymbol{d}$$

Cost function for simple pressure matching

minimize
$$\mathcal{J} = \int_{\boldsymbol{r} \in V} \left| \boldsymbol{g}(\boldsymbol{r})^{\top} \boldsymbol{d} - p_{\text{des}}(\boldsymbol{r}) \right|^2 d\boldsymbol{r}$$

Cost function for weighted pressure matching

$$\underset{\boldsymbol{d}}{\text{minimize}} \ (\boldsymbol{G}\boldsymbol{d} - \boldsymbol{p}_{\text{des}})^{\mathsf{H}} \boldsymbol{W}_{\text{PM}} (\boldsymbol{G}\boldsymbol{d} - \boldsymbol{p}_{\text{des}}) + \lambda_{\text{WPM}} ||\boldsymbol{d}||_2$$

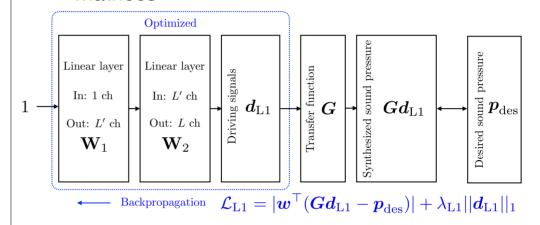

Driving signals solved as a closed-form

$$oldsymbol{d}_{ ext{WPM}} = \left(oldsymbol{G}^{\mathsf{H}}oldsymbol{W}_{ ext{PM}}oldsymbol{G} + \lambda_{ ext{PM}}oldsymbol{I}
ight)^{-1}oldsymbol{G}^{\mathsf{H}}oldsymbol{W}_{ ext{PM}}oldsymbol{p}_{ ext{des}}$$

3. Proposed method

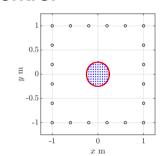
- Pressure matching with LAD regression
 - Cost function with spatial weighting function

minimize
$$\mathcal{J} = \int_{r \in V} \left| w(r) \left(g(r)^{\top} d - p_{\text{des}}(r) \right) \right| dr$$

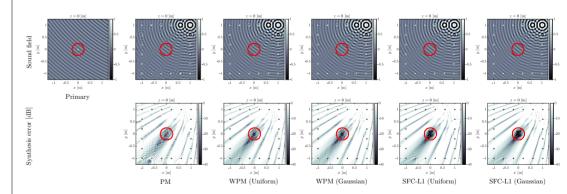


LAD regression with Pytorch

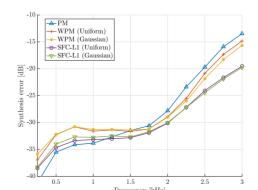
- LAD regression is not a closed form
- Loss function minimized by backpropagation with Adam optimizer

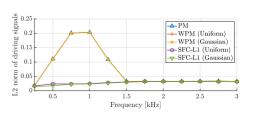

$$\mathcal{L}_{ ext{L}1} = |oldsymbol{w}^ op(oldsymbol{G}oldsymbol{d}_{ ext{L}1} - oldsymbol{p}_{ ext{des}})| + \lambda_{ ext{L}1}||oldsymbol{d}_{ ext{L}1}||_1$$

Driving signals solved by optimizing weighting matrices


3. Computer simulations

- 2.5-dimensional sound field control
 - 3-dimensional free-field
 - 20 loudspeakers and 81 control points




Results

Calculation time of proposed method: 0.6 seconds with 4,000 iterations by using Apple MacBook Air M2 2023

Synthesis error for 3 kHz

Acknowledgement: This study was partly supported by JSPS KAKENHI Grant Number JP23K11177.